朋友,你的代码里需要处理zip文件吗?你是不是也觉得直接调用unzip命令效率非常低吗?那还等什么?赶快拿起键盘,按下复制粘贴键搬运吧!!!
说明:代码只做示例之用,只能处理压缩包里只有一个文件的情况,直接读取第一个压缩文件的数据,调用解压算法进行解压,简单粗暴,如果想处理多个文件的压缩包,请自行查阅zip文件的中央目录的结构。解压算法直接从unzip源码里抠出来的,删除了所有条件编译,不同平台下可能会有不同的结果,目前只在centos6.5下测试通过,其他平台请参考unzip的源码,关于zip文件结构,请参考下面的连接
https://en.wikipedia.org/wiki/Zip_(file_format)
https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.2.0.txt
http://lib.yoekey.com/?p=236
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#ifndef O_BINARY
# define O_BINARY 0
#endif
typedef void zvoid;
typedef unsigned char uch; /* code assumes unsigned bytes; these type- */
typedef unsigned short ush; /* defs replace byte/UWORD/ULONG (which are */
typedef unsigned long ulg; /* predefined on some systems) & match zip */
#define DUMPBITS(n) {b>>=(n);k-=(n);}
#define MAXLITLENS 288
#define MAXDISTS 32
#define ZCONST const
#define UINT_D64 unsigned
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288 /* maximum number of codes in any set */
#define WSIZE 65536L /* window size--must be a power of two, and */
#define wsize WSIZE /* wsize is a constant */
#define INVALID_CODE 99
#define IS_INVALID_CODE(c) ((c) == INVALID_CODE)
# define memzero(dest,len) memset(dest,0,len)
/* bits in base literal/length lookup table */
static ZCONST unsigned lbits = 9;
/* bits in base distance lookup table */
static ZCONST unsigned dbits = 6;
static ZCONST unsigned border[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
/* - Copy lengths for literal codes 257..285 */
static ZCONST ush cplens64[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 3, 0, 0 };
/* For Deflate64, the code 285 is defined differently. */
static ZCONST ush cplens32[] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 };
/* note: see note #13 above about the 258 in this list. */
/* - Extra bits for literal codes 257..285 */
static ZCONST uch cplext64[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 16, INVALID_CODE, INVALID_CODE };
static ZCONST uch cplext32[] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, INVALID_CODE, INVALID_CODE };
/* - Extra bits for distance codes 0..29 (0..31 for Deflate64) */
static ZCONST uch cpdext64[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13, 14, 14 };
static ZCONST uch cpdext32[] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13, INVALID_CODE, INVALID_CODE };
static ZCONST ush cpdist[] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577, 32769, 49153 };
static ZCONST unsigned mask_bits[17] = {
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
struct huft {
uch e; /* number of extra bits or operation */
uch b; /* number of bits in this code or subcode */
union {
ush n; /* literal, length base, or distance base */
struct huft *t; /* pointer to next level of table */
} v;
};
typedef struct Globals {
int bb, bk, wp, incnt;
ZCONST ush *cplens;
ZCONST uch *cplext;
ZCONST uch *cpdext;
struct huft *fixed_tl32; /* inflate static */
struct huft *fixed_td32; /* inflate static */
unsigned fixed_bl32, fixed_bd32; /* inflate static */
struct huft *fixed_tl;
unsigned fixed_bl;
struct huft *fixed_td;
unsigned fixed_bd;
int blockno;
unsigned char *inptr;
unsigned char *outptr;
uch Slide[WSIZE];
} Uz_Globs;
#define NEXTBYTE (G->incnt-- > 0 ? (int)(*G->inptr++) : EOF)
#define NEEDBITS(n) {while((int)k<(int)(n)){int c=NEXTBYTE;\
if(c==EOF){if((int)k>=0)break;retval=1;goto cleanup_and_exit;}\
b|=((ulg)c)<<k;k+=8;}}
static void init_global_variables(Uz_Globs *G)
{
memset(G, 0, sizeof(Uz_Globs));
}
static int huft_free(struct huft *t)/* table to free */
{
register struct huft *p, *q;
/* Go through linked list, freeing from the malloced (t[-1]) address. */
p = t;
while (p != (struct huft *)NULL)
{
q = (--p)->v.t;
free((zvoid *)p);
p = q;
}
return 0;
}
static int huft_build(
ZCONST unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
unsigned n, /* number of codes (assumed <= N_MAX) */
unsigned s, /* number of simple-valued codes (0..s-1) */
ZCONST ush *d, /* list of base values for non-simple codes */
ZCONST uch *e, /* list of extra bits for non-simple codes */
struct huft **t, /* result: starting table */
unsigned *m /* maximum lookup bits, returns actual */
)
{
unsigned a; /* counter for codes of length k */
unsigned c[BMAX + 1]; /* bit length count table */
unsigned el; /* length of EOB code (value 256) */
unsigned f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
register unsigned i; /* counter, current code */
register unsigned j; /* counter */
register int k; /* number of bits in current code */
int lx[BMAX + 1]; /* memory for l[-1..BMAX-1] */
int *l = lx + 1; /* stack of bits per table */
register unsigned *p; /* pointer into c[], b[], or v[] */
register struct huft *q; /* points to current table */
struct huft r; /* table entry for structure assignment */
struct huft *u[BMAX]; /* table stack */
unsigned v[N_MAX]; /* values in order of bit length */
register int w; /* bits before this table == (l * h) */
unsigned x[BMAX + 1]; /* bit offsets, then code stack */
unsigned *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned z; /* number of entries in current table */
/* Generate counts for each bit length */
el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
memzero((char *)c, sizeof(c));
p = (unsigned *)b; i = n;
do {
c[*p]++; p++; /* assume all entries <= BMAX */
} while (--i);
if (c[0] == n) /* null input--all zero length codes */
{
*t = (struct huft *)NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; /* minimum code length */
if (*m < j)
*m = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; /* maximum code length */
if (*m > i)
*m = i;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= c[i]) < 0)
return 2;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1; xp = x + 2;
while (--i) { /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
memzero((char *)v, sizeof(v));
p = (unsigned *)b; i = 0;
do {
if ((j = *p++) != 0)
v[x[j]++] = i;
} while (++i < n);
n = x[g]; /* set n to length of v */
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = l[-1] = 0; /* no bits decoded yet */
u[0] = (struct huft *)NULL; /* just to keep compilers happy */
q = (struct huft *)NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l[h])
{
w += l[h++]; /* add bits already decoded */
/* compute minimum size table less than or equal to *m bits */
z = (z = g - w) > *m ? *m : z; /* upper limit */
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
if ((unsigned)w + j > el && (unsigned)w < el)
j = el - w; /* make EOB code end at table */
z = 1 << j; /* table entries for j-bit table */
l[h] = j; /* set table size in stack */
/* allocate and link in new table */
if ((q = (struct huft *)malloc((z + 1) * sizeof(struct huft))) ==
(struct huft *)NULL)
{
if (h)
huft_free(u[0]);
return 3; /* not enough memory */
}
*t = q + 1; /* link to list for huft_free() */
*(t = &(q->v.t)) = (struct huft *)NULL;
u[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
x[h] = i; /* save pattern for backing up */
r.b = (uch)l[h - 1]; /* bits to dump before this table */
r.e = (uch)(32 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = (i & ((1 << w) - 1)) >> (w - l[h - 1]);
u[h - 1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (uch)(k - w);
if (p >= v + n)
r.e = INVALID_CODE; /* out of values--invalid code */
else if (*p < s)
{
r.e = (uch)(*p < 256 ? 32 : 31); /* 256 is end-of-block code */
r.v.n = (ush)*p++; /* simple code is just the value */
}
else
{
r.e = e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h])
w -= l[--h]; /* don't need to update q */
}
}
/* return actual size of base table */
*m = l[0];
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
static int inflate_codes(struct huft *tl, struct huft *td, unsigned bl, unsigned bd, Uz_Globs *G)
{
register unsigned e; /* table entry flag/number of extra bits */
unsigned d; /* index for copy */
UINT_D64 n; /* length for copy (deflate64: might be 64k+2) */
UINT_D64 w; /* current window position (deflate64: up to 64k) */
struct huft *t; /* pointer to table entry */
unsigned ml, md; /* masks for bl and bd bits */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local copies of globals */
b = G->bb; /* initialize bit buffer */
k = G->bk;
w = G->wp; /* initialize window position */
int i = 0;
/* inflate the coded data */
ml = mask_bits[bl]; /* precompute masks for speed */
md = mask_bits[bd];
while (1) /* do until end of block */
{
NEEDBITS(bl)
t = tl + ((unsigned)b & ml);
while (1) {
DUMPBITS(t->b)
if ((e = t->e) == 32) /* then it's a literal */
{
G->Slide[w++] = (uch)t->v.n;
if (w == wsize)
{
memcpy(G->outptr + G->blockno++ * sizeof(G->Slide), G->Slide, sizeof(G->Slide));
memset(G->Slide, 0, sizeof(G->Slide));
w = 0;
}
break;
}
if (e < 31) /* then it's a length */
{
/* get length of block to copy */
NEEDBITS(e)
n = t->v.n + ((unsigned)b & mask_bits[e]);
DUMPBITS(e)
/* decode distance of block to copy */
NEEDBITS(bd)
t = td + ((unsigned)b & md);
while (1) {
DUMPBITS(t->b)
if ((e = t->e) < 32)
break;
if (IS_INVALID_CODE(e))
return 1;
e &= 31;
NEEDBITS(e)
t = t->v.t + ((unsigned)b & mask_bits[e]);
}
NEEDBITS(e)
d = (unsigned)w - t->v.n - ((unsigned)b & mask_bits[e]);
DUMPBITS(e)
/* do the copy */
do {
e = (unsigned)(wsize -
((d &= (unsigned)(wsize - 1)) > (unsigned)w ? (UINT_D64)d : w));
if ((UINT_D64)e > n) e = (unsigned)n;
n -= e;
if ((unsigned)w - d >= e)
/* (this test assumes unsigned comparison) */
{
memcpy(G->Slide + (unsigned)w, G->Slide + d, e);
w += e;
d += e;
}
else /* do it slowly to avoid memcpy() overlap */
do {
G->Slide[w++] = G->Slide[d++];;
} while (--e);
if (w == wsize)
{
memcpy(G->outptr + G->blockno * sizeof(G->Slide), G->Slide, sizeof(G->Slide));
memset(G->Slide, 0, d);
G->blockno = G->blockno + 1;
w = 0;
}
} while (n);
break;
}
if (e == 31) /* it's the EOB signal */
{
/* sorry for this goto, but we have to exit two loops at once */
goto cleanup_decode;
}
if (IS_INVALID_CODE(e))
return 1;
e &= 31;
NEEDBITS(e)
t = t->v.t + ((unsigned)b & mask_bits[e]);
}
}
cleanup_decode:
/* restore the globals from the locals */
G->wp = (unsigned)w; /* restore global window pointer */
G->bb = b; /* restore global bit buffer */
G->bk = k;
cleanup_and_exit:
/* done */
return retval;
}
static int inflate_dynamic(Uz_Globs *G)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
unsigned i; /* temporary variables */
unsigned j;
unsigned l; /* last length */
unsigned m; /* mask for bit lengths table */
unsigned n; /* number of lengths to get */
struct huft *tl; /* literal/length code table */
struct huft *td; /* distance code table */
unsigned bl; /* lookup bits for tl */
unsigned bd; /* lookup bits for td */
unsigned nb; /* number of bit length codes */
unsigned nl; /* number of literal/length codes */
unsigned nd; /* number of distance codes */
unsigned ll[MAXLITLENS + MAXDISTS]; /* lit./length and distance code lengths */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local bit buffer */
b = G->bb;
k = G->bk;
/* read in table lengths */
NEEDBITS(5)
nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
DUMPBITS(5)
NEEDBITS(5)
nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
DUMPBITS(5)
NEEDBITS(4)
nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
DUMPBITS(4)
if (nl > MAXLITLENS || nd > MAXDISTS)
return 1; /* bad lengths */
/* read in bit-length-code lengths */
for (j = 0; j < nb; j++)
{
NEEDBITS(3)
ll[border[j]] = (unsigned)b & 7;
DUMPBITS(3)
}
for (; j < 19; j++)
ll[border[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
retval = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl);
if (bl == 0) /* no bit lengths */
retval = 1;
if (retval)
{
if (retval == 1)
huft_free(tl);
return retval; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = mask_bits[bl];
i = l = 0;
while (i < n)
{
NEEDBITS(bl)
j = (td = tl + ((unsigned)b & m))->b;
DUMPBITS(j)
j = td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) /* repeat last length 3 to 6 times */
{
NEEDBITS(2)
j = 3 + ((unsigned)b & 3);
DUMPBITS(2)
if ((unsigned)i + j > n)
return 1;
while (j--)
ll[i++] = l;
}
else if (j == 17) /* 3 to 10 zero length codes */
{
NEEDBITS(3)
j = 3 + ((unsigned)b & 7);
DUMPBITS(3)
if ((unsigned)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
else /* j == 18: 11 to 138 zero length codes */
{
NEEDBITS(7)
j = 11 + ((unsigned)b & 0x7f);
DUMPBITS(7)
if ((unsigned)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
huft_free(tl);
/* restore the global bit buffer */
G->bb = b;
G->bk = k;
/* build the decoding tables for literal/length and distance codes */
bl = lbits;
retval = huft_build(ll, nl, 257, G->cplens, G->cplext, &tl, &bl);
if (bl == 0) /* no literals or lengths */
retval = 1;
if (retval)
{
if (retval == 1) {
huft_free(tl);
}
return retval; /* incomplete code set */
}
bd = dbits;
retval = huft_build(ll + nl, nd, 0, cpdist, G->cpdext, &td, &bd);
if (retval == 1)
retval = 0;
if (bd == 0 && nl > 257) /* lengths but no distances */
retval = 1;
if (retval)
{
if (retval == 1) {
huft_free(td);
}
huft_free(tl);
return retval;
}
/* decompress until an end-of-block code */
retval = inflate_codes(tl, td, bl, bd, G);
cleanup_and_exit:
/* free the decoding tables, return */
huft_free(tl);
huft_free(td);
return retval;
}
static int inflate_stored(Uz_Globs *G)
{
UINT_D64 w; /* current window position (deflate64: up to 64k!) */
unsigned n; /* number of bytes in block */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
b = G->bb; /* initialize bit buffer */
k = G->bk;
w = G->wp; /* initialize window position */
/* go to byte boundary */
n = k & 7;
DUMPBITS(n);
/* get the length and its complement */
NEEDBITS(16)
n = ((unsigned)b & 0xffff);
DUMPBITS(16)
NEEDBITS(16)
if (n != (unsigned)((~b) & 0xffff))
return 1; /* error in compressed data */
DUMPBITS(16)
/* read and output the compressed data */
while (n--)
{
NEEDBITS(8)
G->Slide[w++] = (uch)b;
if (w == wsize)
{
memcpy(G->outptr + G->blockno++ * sizeof(G->Slide), G->Slide, sizeof(G->Slide));
memset(G->Slide, 0, sizeof(G->Slide));
w = 0;
}
DUMPBITS(8)
}
/* restore the globals from the locals */
G->wp = (unsigned)w; /* restore global window pointer */
G->bb = b; /* restore global bit buffer */
G->bk = k;
cleanup_and_exit:
return retval;
}
static int inflate_fixed(Uz_Globs *G)
{
if (G->fixed_tl == (struct huft *)NULL)
{
int i; /* temporary variable */
unsigned l[288]; /* length list for huft_build */
/* literal table */
for (i = 0; i < 144; i++)
l[i] = 8;
for (; i < 256; i++)
l[i] = 9;
for (; i < 280; i++)
l[i] = 7;
for (; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
G->fixed_bl = 7;
if ((i = huft_build(l, 288, 257, G->cplens, G->cplext,
&G->fixed_tl, &G->fixed_bl)) != 0)
{
G->fixed_tl = (struct huft *)NULL;
return i;
}
/* distance table */
for (i = 0; i < MAXDISTS; i++) /* make an incomplete code set */
l[i] = 5;
G->fixed_bd = 5;
if ((i = huft_build(l, MAXDISTS, 0, cpdist, G->cpdext,
&G->fixed_td, &G->fixed_bd)) > 1)
{
huft_free(G->fixed_tl);
G->fixed_td = G->fixed_tl = (struct huft *)NULL;
return i;
}
}
/* decompress until an end-of-block code */
return inflate_codes(G->fixed_tl, G->fixed_td,
G->fixed_bl, G->fixed_bd, G);
}
static int inflate_block(int *e, Uz_Globs *G)
{
unsigned t; /* block type */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
int retval = 0; /* error code returned: initialized to "no error" */
/* make local bit buffer */
b = G->bb;
k = G->bk;
/* read in last block bit */
NEEDBITS(1)
*e = (int)b & 1;
DUMPBITS(1)
/* read in block type */
NEEDBITS(2)
t = (unsigned)b & 3;
DUMPBITS(2)
/* restore the global bit buffer */
G->bb = b;
G->bk = k;
/* inflate that block type */
if (t == 2)
return inflate_dynamic(G);
if (t == 0)
return inflate_stored(G);
if (t == 1)
return inflate_fixed(G);
/* bad block type */
retval = 2;
cleanup_and_exit:
return retval;
}
int MZUnzip(uint8_t *unzip, uint8_t *data, uint32_t zip_size)
{
Uz_Globs G;
init_global_variables(&G);
G.inptr = data;
G.outptr = unzip;
G.incnt = zip_size;
G.cplens = cplens32;
G.cplext = cplext32;
G.cpdext = cpdext32;
G.fixed_tl = G.fixed_tl32;
G.fixed_bl = G.fixed_bl32;
G.fixed_td = G.fixed_td32;
G.fixed_bd = G.fixed_bd32;
int r = 0, e = 0;
do {
if ((r = inflate_block(&e, &G)) != 0)
{
return r;
}
} while (!e);
G.fixed_tl32 = G.fixed_tl;
G.fixed_bl32 = G.fixed_bl;
G.fixed_td32 = G.fixed_td;
G.fixed_bd32 = G.fixed_bd;
memcpy(unzip + G.blockno * sizeof(G.Slide), G.Slide, G.wp);
return r;
}
int MZUnzipFile(const char *src)
{
const char *zipfilename;
int zipfilefd;
int zipfilelen;
unsigned char *zipfilebuff;
struct stat stat_zipfile;
ssize_t readret, writeret;
int filezipsize = 0;
int fileunzipsize = 0;
int filenamelen = 0;
int fileextralen = 0;
int filezipflag = 0;
int filedescriptor = 0;
int filezipheadsize = 0;
char *filename;
char *filebuff;
char *fileunbuff;
memset(&stat_zipfile, 0, sizeof(stat_zipfile));
zipfilename = src;
stat(zipfilename, &(stat_zipfile));
zipfilelen = stat_zipfile.st_size;
zipfilebuff = malloc(zipfilelen);
if (!zipfilebuff)
return 1;
memset(zipfilebuff, 0, zipfilelen);
zipfilefd = open(zipfilename, O_RDONLY | O_BINARY);
while ((readret = read(zipfilefd, zipfilebuff, zipfilelen)))
{
if (readret < 0)
break;
}
close(zipfilefd);
memcpy(&filezipsize, zipfilebuff + 18, 4);
memcpy(&fileunzipsize, zipfilebuff + 22, 4);
memcpy(&filenamelen, zipfilebuff + 26, 2);
memcpy(&fileextralen, zipfilebuff + 28, 2);
filezipheadsize = 30 + filenamelen + fileextralen;
//做个简单的文件校验,具体内容请查阅zip文件格式
//文件头+压缩后的大小不等于固定值0x02014b50,则说明文件不完整
//file_zipflag的第三比特位为1,则在数据段后面会有一个固定值为0x08074b50的Data descriptor结构
memcpy(&filedescriptor, zipfilebuff + filezipheadsize + filezipsize, 4);
if (filezipflag & 0x08 == 0x08)
{
if (filedescriptor != 0x08074b50)
{
return -1;
}
}
else
{
if (filedescriptor != 0x02014b50)
{
return -1;
}
}
filename = malloc(filenamelen);
filebuff = malloc(filezipsize);
fileunbuff = malloc(fileunzipsize);
if (!filename || !filebuff || !fileunzipsize)
return -1;
memset(filename, 0, filenamelen);
memset(filebuff, 0, filezipsize);
memset(fileunbuff, 0, fileunzipsize);
memcpy(filename, zipfilebuff + 30, filenamelen);
memcpy(filebuff, zipfilebuff + filezipheadsize, filezipsize);
free(zipfilebuff);
zipfilebuff = NULL;
int r = MZUnzip(fileunbuff, filebuff, filezipsize);
if (r)
return r;
int outfile = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (outfile < 0)
{
r = -1;
goto END;
}
int pos = 0;
writeret = 0;
while (1)
{
writeret = write(outfile, fileunbuff + pos, (fileunzipsize - pos > 1024 ? 1024 : fileunzipsize - pos));
pos += writeret;
if (writeret < 0)
break;
if (pos == fileunzipsize)
break;
}
close(outfile);
END:
free(filename);
free(filebuff);
free(fileunbuff);
filename = NULL;
filebuff = NULL;
fileunbuff = NULL;
return 0;
}
#if 0
int main(int argc, char **argv)
{
int r = MZUnzipFile("/home/zhangn/work/myunzip/bin/x64/Debug/1.zip");
return r;
}
#endif